
Notes on 100 Gbps (ongoing)

Brett Viren

October 4, 2019

1 Overview

This is a set of notes while understanding the ATLAS/DUNE FELIX DAQ test machines with high-speed 100
Gbps networking. The notes are approximately in order changes made to the system.

1.1 SSH

The FELIX DAQ computers are down in the ATLAS lab. They are accessed on a private network via a router
"felix.phy.bnl.gov" with SSH poking out to the BNL internal network on select ports:

3422 sui

3522 dune

After making my account and populating SSH keys I set up ~.ssh/config so eg ssh dune.felix gets me in:

host dune.felix

User bviren

Hostname felix.phy.bnl.gov

Port 3522

ForwardAgent yes

host sui.felix

User bviren

Hostname felix.phy.bnl.gov

Port 3422

ForwardAgent yes

I make my account:

useradd -Gwheel -c "Brett Viren" -m -s /bin/bash bviren

passwd bviren

The -Gwheel gives sudo access but in order to make it easier to gain root I also add my SSH public key to
/root/.ssh/authorized_keys and modify /etc/ssh/sshd_config to have:

PermitRootLogin prohibit-password

After restarting the SSH daemon this lets ssh root@dune.felix work with SSH keys but still denies use of a
root password.

1

1.2 Systems

1.2.1 dune

Bits from dune's dmesg:

ixgbe: Intel(R) 10 Gigabit PCI Express Network Driver - version 5.1.0-k-rh7.6

i40e: Intel(R) Ethernet Connection XL710 Network Driver - version 2.3.2-k

mlx5_core 0000:18:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(64) RxCqeCmprss(0)

mlx5_ib: Mellanox Connect-IB Infiniband driver v5.0-0

mlx5_core 0000:18:00.1 enp24s0f1: Link up

And ifconfig

enp24s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet6 fe80::b380:419d:570f:24c9 prefixlen 64 scopeid 0x20<link>

ether 98:03:9b:97:40:2f txqueuelen 1000 (Ethernet)

RX packets 104383 bytes 34995092 (33.3 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 52444 bytes 8739224 (8.3 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

And lspci

18:00.0 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

18:00.1 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

1.2.2 sui

Bits from sui's dmesg:

mlx5_core 0000:b3:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(64) RxCqeCmprss(0)

mlx5_ib: Mellanox Connect-IB Infiniband driver v5.0-0

mlx5_core 0000:b3:00.1 enp179s0f1: Link up

And ifconfig

enp179s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet6 fe80::c058:3aa8:875d:7889 prefixlen 64 scopeid 0x20<link>

ether 98:03:9b:97:40:17 txqueuelen 1000 (Ethernet)

RX packets 104783 bytes 35130912 (33.5 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 52384 bytes 8703056 (8.2 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

And lspci

b3:00.0 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

b3:00.1 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

2 Bootstrap

This section is roughly linear account of bootstrapping the system and my understanding of it.

2

2.1 OS

On both systems I install a few pakages:

yum install emacs git make cmake bison python3 openssl-devel readline \

libuuid-devel protobuf-devel libtool centos-release-scl-rh \

devtoolset-3-gcc devtoolset-3-gcc-c++ \

autoconf automake unzip iperf3

update-alternatives --install /usr/bin/gcc-4.9 gcc-4.9 \

/opt/rh/devtoolset-3/root/usr/bin/gcc 10

update-alternatives --install /usr/bin/g++-4.9 g++-4.9 \

/opt/rh/devtoolset-3/root/usr/bin/g++ 10

For testing connectivity on the 100 Gbps network I open up a range of ports on both ends.

for n in {5200..5209} ; do firewall-cmd --zone=public --add-port=$n/tcp --permanent; done

firewall-cmd --reload

2.2 NIC

The 100 Gbps NICs are not con�gured but from dmesg and ifconfig one can �gure out which ones are which and
which are linked to the switch. I pick the 10.0.x.y subnet to use for the 100 Gbps and I pick a convention for IP
addresses based on the NIC device name (the x=1 from the f1 of the interface name) and the IP address (y=117
for main IP 192.168.1.117) of the main NIC.

For dune:

ip addr add 10.0.1.117/24 dev enp24s0f1 broadcast 10.0.1.255

ip r add 10.0.1.115 dev enp24s0f1

ip link set dev enp24s0f1 up mtu 9000

For sui:

ip addr add 10.0.1.115/24 dev enp179s0f1 broadcast 10.0.1.255

ip route add 10.0.1.117 dev enp179s0f1

ip link set dev enp179s0f1 up mtu 9000

2.3 Mellanox

The 100 Gbps NICs are Mellanox ConnectX-5. Download some software from https://www.mellanox.com/page/

management_tools and see also https://access.redhat.com/articles/3082811.

cd /root

tar -xf mft-4.12.0-105-x86_64-rpm.tgz

cd mft-4.12.0-105-x86_64-rpm

./install.sh

yum install rpm-build kernel kernel-tools kernel-devel

reboot

./install.sh

mst start

Some status queries:

mst status

yum install mstflint

mstconfig -d 18:00.0 q

mstconfig -d 18:00.1 q

mlxlink -d net-enp24s0f1

3

https://www.mellanox.com/page/management_tools
https://www.mellanox.com/page/management_tools
https://access.redhat.com/articles/3082811

2.4 iperf3

The iperf3 program runs a very commonly used network benchmark. It requires one instance to play the role of a
server and one the client. With no special tuning, a single iperf3 client and server can get about 20Gbps on this
100 Gbps network. The tests use ports (5200-5209) opened previous. Here describes running multiple instances

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/multi-stream-iperf3/

on server (.115)

for port in {5200..5209}; do (iperf3 -s -B 10.0.1.115 -p $port &); done

on client (.117)

for port in {5200..5209}; do (iperf3 -c 10.0.1.115 -T s$port -p $port &); done

This shows 10 approximately simultaneous tests, each achieving about 10 Gbps.
Following tuning advice from that es.net page.

cpupower frequency-set -g performance

watch -n 1 grep MHz /proc/cpuinfo

A single iperf3 still gives only 20.9 Gbit/sec. Now try some suggested sysctl tuning.

sysctl -a > sysctl-initial.out

sysctl -psysctl-tune.txt

net.core.rmem_max = 268435456

net.core.wmem_max = 268435456

net.ipv4.tcp_rmem = 4096 87380 134217728

net.ipv4.tcp_wmem = 4096 65536 134217728

net.core.netdev_max_backlog = 250000

net.ipv4.tcp_no_metrics_save = 1

net.ipv4.tcp_congestion_control = htcp

net.ipv4.tcp_mtu_probing = 1

net.core.default_qdisc = fq

Iperf3: 19.2 Gbits/sec. Restore prior behavior:

sysctl -psysctl-initial.out

Retest iperf3 and get 20.1 Gbits/sec. Maybe no signi�cant change, especially not compared to the "missing"
~80 Gbps.

2.5 Jumbo Frames

I have heard that setting Jumbo Frames (large MTU) can help throughput. Try the naive thing and set MTU to
9000 on the NICs and test:

on .115

ip link set dev enp179s0f1 up mtu 9000

on .117

ip link set dev enp24s0f1 up mtu 9000

ping -s 8972 -M do -c 4 10.0.1.115

This fails outright. Probably the switch needs some setting (found below).

4

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/multi-stream-iperf3/

2.6 Serial console

Access to some management interface on the switch is needed. Apparently there are several including:

� serial console

� SSH and TELNET

� HTTP ("J-Web")

To get the latter one needs to start on the serial console. Kai and Dimitrios found a way to physically connect
this 100 Gbps device over a 9600 baud link to dune. I use minicom with serial setup 9600 8N1, /dev/ttyS0.

Initial login over serial gets root with no password, the system continually sprays messages overy the serial
connection and the connection freezes frequently. Frequent killing of minicom and reconnecting is needed as is a
lot of blind typing.

The Juniper documentation for what comes next is rather bad. The PDF manual is missing lines and the
HTML version has typos. After much �ailing, below is a reconstruction of what was done.

(login)

cli

configure

set system root-authentication plain-text-password

(password)

(password)

commit

delete chassis auto-image-upgrade

commit

set routing-options static route default next-hop 192.168.1.1

set interfaces em0 unit 0 family inet address 192.168.1.127/24

commit

set system services ssh

commit

Can now ssh as root@192.168.1.127. Some info

root@qfx5200> show system alarms

2 alarms currently active

Alarm time Class Description

2019-10-02 04:08:37 UTC Minor JBS For Node locked licenses needed for this device

2019-09-26 03:33:05 UTC Minor Rescue configuration is not set

root@qfx5200> show chassis hardware

Hardware inventory:

Item Version Part number Serial number Description

Chassis WH0218510023 QFX5200-32C-32Q

Pseudo CB 0

Routing Engine 0 BUILTIN BUILTIN RE-QFX5200-32C-32Q

FPC 0 REV 32 650-059719 WH0218510023 QFX5200-32C-32Q

CPU BUILTIN BUILTIN FPC CPU

PIC 0 BUILTIN BUILTIN 32X40G/32X100G-QSFP

Xcvr 4 REV 01 740-061411 1FCS4431005 QSFP28-100G-AOC-10M

Xcvr 28 REV 01 740-061411 1FCS4429007 QSFP28-100G-AOC-10M

Power Supply 0 REV 05 740-053352 1GD18191166 JPSU-850W-AC-AFO

Power Supply 1 REV 05 740-053352 1GD18191165 JPSU-850W-AC-AFO

Fan Tray 0 QFX5200 Fan Tray 0, Front to Back Airflow - AFO

5

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/configuration/qfx5200-initial-configuration-cli.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/configuration/qfx5200-initial-configuration-cli.html

Fan Tray 1 QFX5200 Fan Tray 1, Front to Back Airflow - AFO

Fan Tray 2 QFX5200 Fan Tray 2, Front to Back Airflow - AFO

Fan Tray 3 QFX5200 Fan Tray 3, Front to Back Airflow - AFO

Fan Tray 4 QFX5200 Fan Tray 4, Front to Back Airflow - AFO

WYixRm-XNEFt-UkSuzR

2.7 More iperf3

Can get 28.5 Gbits/sec if the iperf3 server is pinned to a CPU.

on .117

tc qdisc add dev enp24s0f1 root fq

on .115

tc qdisc add dev enp179s0f1 root fq

2.8 More playing on the switch

monitor interface traffic

configure

set interfaces et-0/0/4 mtu 9216

set interfaces et-0/0/28 mtu 9216

commit

That gets 39.3 Gbps in iperf3

2.9 ZeroMQ

For ZMQ (and PTMP) I have a script (file://ssh:dune.felix:/home/bviren/dev/bootstrap.sh) to build from
source on dune and rsync to the same directory on sui. It installs tip of the master branch of libzmq. After
building and from inside the libzmq source, the ZMQ performance benchmarks can be run like:

$ cd dev/libzmq/perf

$ CC=gcc-4.9 CXX=g++-4.9 \

REMOTE_IP_SSH=10.0.1.115 \

LOCAL_TEST_ENDPOINT="tcp://10.0.1.117:5200" \

REMOTE_TEST_ENDPOINT="tcp://10.0.1.115:5200" \

REMOTE_LIBZMQ_PATH=$(pwd) \

./generate_csv.sh

To create the plots from the results, some Python installation is needed:

$ python3 -m venv ~/dev/venvs/zmqbm

$ source ~/dev/venvs/zmqbm/bin/activate

$ pip install matplotlib

$ python generate_graphs.py

With the default MTU of 1500, the PUSH/PULL throughput reaches 20 Gbps with the largest message size.
After the MTU increase, it reaches 25 Gbps. A summary of the results are shown below.

6

file://ssh:dune.felix:/home/bviren/dev/bootstrap.sh

These results (note, it seems jumbo frame MTU was lost in these plots which is why the peak is at 20 Gbps) are
roughly consistent with the tests reported on the ZMQ list and on the wiki at: http://wiki.zeromq.org/results:
100gbe-tests-v432 The throughput measurements are consistent with the NetIO comparison with ZeroMQ. The
money plots from that summary are reproduced here:

2.10 CPU bottleneck

After almost giving up on why 100 Gbps can not be achieved, it was observed that the iperf3 client was running
at 100% CPU (server at about 75%). This shows the client is single-threaded and CPU bound. And, the previous
10-client/10-server test showed 100 Gbps in aggregate. Repeating with 3 ~iperf clients and servers still did
not saturate the network but did saturate the client CPU. 4 clients allowed an aggregate of 90 Gbps an client CPU
usage of about 75%.

7

http://wiki.zeromq.org/results:100gbe-tests-v432
http://wiki.zeromq.org/results:100gbe-tests-v432

Observing the sender end of the ZMQ benchmark in top showed it was at 150% CPU. ZMQ uses background
threads for I/O, separate from the "main" thread or other application level threads. The hypothesis is that the
ZMQ output thread is CPU-bound and that this explains the ZMQ benchmark not saturating the network.

2.11 ZeroMQ benchmark

Investigate how to modify the ZMQ benchmark to use more threads with the goal to saturate the network with a
single executable. The zguide suggests one I/O thread per GB/s.

http://zguide.zeromq.org/page:all#toc31

Naively, then setting 12 threads will bring magic. However, after modifying the perf/{local,remote}_thr to
accept an CLI argument to set the number of I/O threads, the result is still a single I/O thread pegged at 100%
(as per top -d1 -H). Here's the run with 10 I/O threads:

[bviren@sui dev]$./libzmq/perf/.libs/remote_thr tcp://10.0.1.117:5200 131072 1000000 0 10

using 10 I/O threads

[bviren@dune dev]$./libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 131072 1000000 0 10

using 10 I/O threads

message size: 131072 [B]

message count: 1000000

mean throughput: 21952 [msg/s]

mean throughput: 23018.414 [Mb/s]

During the run the local_thr (app) thread is at 10% and a single I/O thread is at 100%. The other nine are
observed at 0%. On the sender, the remote_thr (app) thread is essentially at 0% and one I/O thread is at 30-50%
and the other nine at 0%. So, sender is not yet bottlenecked even though its only using one thread.

Try pinning to a CPU:

service irqbalance stop

[root@dune ~]# taskset 8 ~bviren/dev/libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 131072 1000000 0 10

using 10 I/O threads

message size: 131072 [B]

message count: 1000000

mean throughput: 31926 [msg/s]

mean throughput: 33476.855 [Mb/s]

service irqbalance start

During this run the I/O thread was at 80-90%.
Try even larger message sizes.

[bviren@dune dev]$./libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 262144 1000000 0 10

using 10 I/O threads

message size: 262144 [B]

message count: 1000000

mean throughput: 12553 [msg/s]

mean throughput: 26325.583 [Mb/s]

The next power of 2 doesn't change signi�cantly. Try it also while pinned:

[root@dune ~]# taskset 8 ~bviren/dev/libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 524288 1000000 0 10

using 10 I/O threads

message size: 524288 [B]

message count: 1000000

mean throughput: 8436 [msg/s]

mean throughput: 35384.354 [Mb/s]

8

http://zguide.zeromq.org/page:all#toc31

2.12 Multiple connections

Doron Somech (zmq guru) responds to my question on zeromq-dev saying all that is needed is to call zmq_connect()
multiple times. He wasn't kidding!

10 threads in both remote_thr and local_thr, 10 connect() calls in remote_thr.

[bviren@dune dev]$./libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 131072 1000000 0 10

using 10 I/O threads

message size: 131072 [B]

message count: 1000000

mean throughput: 63112 [msg/s]

mean throughput: 66178.185 [Mb/s]

10 threads in both remote_thr and local_thr, 100 connect() calls in remote_thr.

[bviren@dune dev]$./libzmq/perf/.libs/local_thr tcp://10.0.1.117:5200 131072 1000000 0 10

using 10 I/O threads

message size: 131072 [B]

message count: 1000000

mean throughput: 91633 [msg/s]

mean throughput: 96084.376 [Mb/s]

In the second case, the 10 threads in localthr are using between 50-100% CPU. remotethr is much less active
with about half threads around 50% and half around 10%.

3 Report

We should write this out in some more organized fashion. It should include systematic look at performance in
terms of

� latency

� throughput

� CPU usage

as a function of

� message size

� number of I/O threads

� number of connections

Generation and visualization of these performance benchmarks should ideally be folded back into libzmq/perf/.

3.1 Prepare

SSH keeps breaking the connection if idle.

yum install tmux

In four local terminals

$ tmux new-ses dune-user

$ tmux new-ses dune-root

$ tmux new-ses sui-user

$ tmux new-ses sui-root

9

Develop a Python script to launch the benchmarks and a shell script to iterate over top level parameters.

$./zmqbm.sh

Which runs various forms of

$./zmqbm.py generate --nthreads=10 --nconnections=100 --nmsgs=1000000 -o junk3.json

The JSON �le can be turned into a plot

$./zmqbm.py plot-thr -o junk3.pdf junk3.json

The %CPU is for the local_thr job calculated as (user+system)/elapsed with values collected by pre-pending
/usr/bin/time to this command.

I'm too lazy to include proper uncertainties but running several jobs it's clear that there is a lot of variation in
the %CPU for small message. Since these small-message jobs �nish in less than a second, I'm guessing "elapsed"
is strongly in�uenced by process startup/terminate times which fairly should not be included for a steady-state.
So, I did some special runs with 10M messages for a few of these points and they show a fairly �at 700-800% CPU
usage. Example is shown below.

10

OTOH, the valley of %CPU for mid-size messages is robust. There are also variations in the PPS and throughput
across the multiple runs but I would categorize the above example as being fairly representative and the variations
not being qualitatively signi�cant.

They test out to 1GB while above tests goes only to 100kB. As messages become bigger doing the tests over a
�xed number of messages becomes prohibitive, so change the code to allow to specify a data volume.

do_one () {

name="zmqbm-vol-10-100-${1}-${2}"

if [! -f $name.json] ; then

./zmqbm.py generate --volume=$3 --nthreads=10 --nconnections=100 \

--nminmsglog2=$1 --nmaxmsglog2=$2 -o $name.json

fi

./zmqbm.py plot-thr -o $name.png $name.json

}

do_one 1 5 500M

do_one 5 10 10G

do_one 10 30 100G

Result is below. After about 10 kB message size, ZeroMQ can saturate 100 Gbps with 10 threads.

11

Latency is also checked via REP/REQ. The latency sums the total time to send and receive a given number of
messages of the given size and divides by twice that number. The messages is sent through an "echo" type server
(local_lat) which does no application-level memory allocation. The initiator (remote_lat) also reuses the same
memory for each message.

The latency results are summarized as a function of message size in the �gure below. Latency is �at at about
35 µs until the message approaches the MTU. These results are actually lower than what was reported on the ZMQ
wiki.

12

3.2 PUB/SUB

13

	Overview
	SSH
	Systems
	dune
	sui

	Bootstrap
	OS
	NIC
	Mellanox
	iperf3
	Jumbo Frames
	Serial console
	More iperf3
	More playing on the switch
	ZeroMQ
	CPU bottleneck
	ZeroMQ benchmark
	Multiple connections

	Report
	Prepare
	PUB/SUB

